Part Number Hot Search : 
TDA2030A 15AG102S CD420840 1C101 MKW2037 OPB716 TA7809S CA308101
Product Description
Full Text Search
 

To Download AUIRFR4292 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  descriptionspecifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest process- ing techniques to achieve extremely low on-resistanceper silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive appli- cations and a wide variety of other applications. hexfet ? is a registered trademark of international rectifier. * qualification standards can be found at http://www.irf.com/ features advanced process technology low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax lead-free, rohs compliant automotive qualified * hexfet ? power mosfet s d g absolute maximum ratingsstresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. these are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. ambient temperature (t a ) is 25c, unless otherwise specified. v (br)dss 250v r ds(on) typ. 275m max. 345m i d 9.3a gds gate drain source d-pak AUIRFR4292    i-pak auirfu4292    parameter units i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj e as (tested ) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds (1.6mm from case ) thermal resistance parameter typ. max. units r jc junction-to-case  CCC 1.5 c/w r ja junction-to-ambient (pcb mount)  CCC 50 r ja junction-to-ambient CCC 110 max. 9.36.6 4097 130 see fig.12a, 12b, 15, 16 -55 to + 175 300 100 0.67 20 
       
  
           form quantity tube 75 AUIRFR4292 tape and reel 2000 AUIRFR4292tr tape and reel left 3000 AUIRFR4292trl tape and reel right 3000 AUIRFR4292trr eol notice # 530 auirfu4292 ipak tube 75 auirfu4292 note base part number package type orderable part number dpak AUIRFR4292 standard pack downloaded from: http:///
 
  
          
    repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).  limited by t jmax , starting t j = 25c, l = 8.1mh, r g = 50 , i as = 5.6a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  
            starting t j = 25c, l = 8.1mh,r g = 50 , i as = 5.6a, v gs =10v.  when mounted on 1" square pcb (fr-4 or g-10 material ). for recommended footprint and soldering techniques refer toapplication note #an-994.              s d g s d g static electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 250 CCC CCC v v (br)dss / t j breakdown voltage temp. coefficient CCC 0.31 CCC v/c r ds(on) static drain-to-source on-resistance CCC 275 345 m v gs (t h ) gate threshold voltage 3.0 CCC 5.0 v gfs forward transconductance 6.2 CCC CCC v i ds s drain-to-source leakage current CCC CCC 20 a CCC CCC 250 i gs s gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 dynamic electrical @ t j = 25c (unless otherwise specified) parameter min. typ. max. units q g total gate charge CCC 13 20 q gs gate-to-source charge CCC 4.7 CCC nc q gd gate-to-drain ("miller") charge CCC 4.8 CCC t d(on) turn-on delay time CCC 11 CCC t r r i s e t i m e C C C1 5C C C t d(off) t u r n - o f f d e l a y t i m e C C C1 6C C Cn s t f fall time CCC 8.4 CCC l d internal drain inductance CCC 4.5 CCC between lead, nh 6mm (0.25in.) l s internal source inductance CCC 7.5 CCC from package and center of die contact c iss input capacitance CCC 705 CCC c os s output capacitance CCC 71 CCC c rs s reverse transfer capacitance CCC 20 CCC pf c os s output capacitance CCC 600 CCC c os s output capacitance CCC 26 CCC c os s eff. effective output capacitance CCC 65 CCC diode characteristics parameter min. typ. max. units i s continuous source current CCC CCC 9.3 (body diode) a i sm pulsed source current CCC CCC 40 (body diode)  v sd diode forward voltage CCC CCC 1.3 v t rr reverse recovery time CCC 110 165 ns q rr reverse recovery charge CCC 390 585 nc t on forward turn-on time intrins ic turn-on time is negligible (turn-on is dominated by ls+l d) v gs = 0v, v ds = 200v, ? = 1.0mhz v gs = 0v, v ds = 0v to 200v  v gs = 10v  v dd = 250v i d = 5.6a r g = 15 di/dt = 100a/ s  conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1.0ma v gs = 10v, i d = 5.6a  v ds = v gs , i d = 50 a v ds = 250v, v gs = 0v v ds = 250v, v gs = 0v, t j = 125c conditions v gs = 0v, v ds = 1.0v, ? = 1.0mhz mosfet symbol showing the integral reverse p-n junction diode. t j = 25c, i s = 5.6a, v gs = 0v  t j = 25c, i f = 5.6a, v dd = 125v v ds = 50v, i d = 5.6a i d = 5.6a v ds = 125v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 20v v gs = -20v downloaded from: http:///
!  
  
           
  fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.5v 7.0v 6.5v 6.0v bottom 5.5v 60 s pulse width tj = 25c 5.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 5.5v 60 s pulse width tj = 175c vgs top 15v 10v 8.0v 7.5v 7.0v 6.5v 6.0v bottom 5.5v 4 5 6 7 8 9 10 v gs , gate-to-source voltage (v) 1.0 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 50v 60 s pulse width 0123456 i d ,drain-to-source current (a) 0 2 4 6 8 10 12 14 16 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380 s pulse width downloaded from: http:///
  
  
          
  fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 2 4 6 8 1012141618 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 200v v ds = 125v v ds = 50v i d = 5.6a 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 v sd , source-to-drain voltage (v) 1.0 10 100 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc downloaded from: http:///
"  
  
           
  fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 2 4 6 8 10 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 9.3a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc downloaded from: http:///
#  
  
          
  q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 1.0a 2.2a bottom 5.6a -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 50 a i d = 250 a i d = 1.0ma i d = 1.0a downloaded from: http:///
$  
  
           
  fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type.2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse.5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 5.6a downloaded from: http:///
%  
  
          
  fig 17.  
      for n-channel hexfet   power mosfets  
      ? 
     ?     ?

         p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period   ! "  #$% #
 
%  + - + + + - - -       ?        !  ?   " #$## ?        %  && ? #$##'$

 v ds 90%10% v gs t d(on) t r t d(off) t f  ( ) 1 *  %   0.1 %      & ' + -  fig 18a. switching time test circuit fig 18b. switching time waveforms downloaded from: http:///
&  
  
           
  
 
  
  
    ' ( 
           ! "
  !  ""!"  " #!#   $ %  
          
     downloaded from: http:///
  
  
          
  
 #  
 # 
  
  
    ' (         ! "
  !  ""!"  " #!#   $ %  
          
     downloaded from: http:///
  
  
           
   
  $ %    
  
    ' ( tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch  
          
     downloaded from: http:///
  
  
          
  & '( )  **  *) * ** *(  ) +, - ./,,,0 )0  &&1 ./ * (0 qualification information ? d-pak i-pak qualification level automotive (per aec-q101) comments: this part number(s) passed automotive qualification. irs industrial and consumer qualification level is granted by extension of the higher automotive level. charged device model class c5 (+/- 2000) ?? aec-q101-005 moisture sensitivity level msl1 rohs compliant yes esd machine model class m1b (+/- 100) ?? aec-q101-002 human body model class h1a (+/- 500) ?? aec-q101-001 downloaded from: http:///
!  
  
           
   
 )   * + 
  

,   
   -


   '(,+
 
  
 
 
     
,   
 +

 , *  

*
 
, 
 
 . +/0)12



,*3
 
  4 +

 
  
 +
 
0
 
 5 
6 


  

 
+    
  
   
  
    
      
   
 6*7+ 
4*

 4
2   *

*82   *+
, 4  +
 
 
 
  *
   
*
 
  
 

 +-

  

  
+ 

7
  9 

   
  
 
 
, 4  + 
+ + 
 


 


  
*
 
 
 

*
  

  
 
  
 : 


 

  ,  
 


 
 

  

 *5 

  
 

 
,   

*
 *
 
 
, ,
2* 


 
,    ,   



*    
 
+  

9 


* 
+   

* 

 
 


 
*
  
  

 
  

5*
 *

 ;*  
   
  
 *    
 
9  
  ;*   *

 
   
*    : 
 +   
  +  2 

*+

  *
 * *  

 5*

 
 
9  ,   +++ +++
  

   <*
   *+* =
+ 0+ *'=0(
) 
  +  
 =0 *  
4*  * 
 

 
;* 
+ +*

 
  *=0 *:+  
4+ *+
  
*;*6
  *
*


  ++
*4 
  
     
 +

 

, 

,
    
 +*
<37#&&4    ++
/0)1;* 
 ++ **
:+  
 

, 
 
 

*
  4  % .* (// $/( *+.* (#  ** ./-,,,0 )0 .* (2 *)       '' ( 
 )
 * $    +,"  - ./'0 +"+12'" downloaded from: http:///
  
  
          
  date comments ? updated datasheet with ir corporate tempalte. ? updated soa curve fig 8 from "50v" vds to "250v" on page 4. ? updated package outline on page 9 & 10 ? updated ordering information to reflect the end-of-life (eol) of the option (eol notice #530) revision history 9/2/2014 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of AUIRFR4292

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X